-
Recent Posts
Recent Comments
Blogroll
Categories
Tags
- Akshay Venkatesh
- Ana Caraiani
- Andrew Wiles
- Bach
- Bao Le Hung
- Barry Mazur
- Class Field Theory
- Coffee
- completed cohomology
- David Geraghty
- David Helm
- Dick Gross
- Galois Representations
- Gauss
- George Boxer
- Gowers
- Grothendieck
- Hilbert modular forms
- Inverse Galois Problem
- Jack Thorne
- James Newton
- Joel Specter
- John Voight
- Jordan Ellenberg
- Ken Ribet
- Kevin Buzzard
- Langlands
- Laurent Clozel
- Mark Kisin
- Matthew Emerton
- Michael Harris
- modular forms
- Patrick Allen
- Peter Scholze
- Richard Moy
- Richard Taylor
- RLT
- Robert Coleman
- Ruochuan Liu
- Serre
- Shiva Chidambaram
- The Hawk
- Toby Gee
- torsion
- Vincent Pilloni
Archives
- June 2025 (1)
- April 2025 (1)
- March 2025 (2)
- January 2025 (1)
- December 2024 (2)
- November 2024 (1)
- October 2024 (1)
- September 2024 (2)
- August 2024 (1)
- July 2024 (2)
- June 2024 (2)
- May 2024 (1)
- February 2024 (1)
- October 2023 (2)
- September 2023 (2)
- June 2023 (2)
- May 2023 (2)
- April 2023 (1)
- March 2023 (1)
- February 2023 (4)
- November 2022 (2)
- July 2022 (2)
- June 2022 (2)
- April 2022 (3)
- March 2022 (1)
- February 2022 (1)
- January 2022 (1)
- December 2021 (1)
- November 2021 (1)
- August 2021 (2)
- June 2021 (1)
- April 2021 (2)
- March 2021 (2)
- February 2021 (2)
- November 2020 (2)
- October 2020 (3)
- June 2020 (2)
- May 2020 (2)
- April 2020 (5)
- March 2020 (8)
- February 2020 (2)
- January 2020 (3)
- December 2019 (2)
- November 2019 (1)
- October 2019 (4)
- September 2019 (4)
- August 2019 (3)
- July 2019 (2)
- June 2019 (2)
- May 2019 (1)
- April 2019 (2)
- March 2019 (3)
- February 2019 (1)
- January 2019 (5)
- December 2018 (3)
- November 2018 (2)
- October 2018 (3)
- September 2018 (1)
- August 2018 (2)
- July 2018 (1)
- June 2018 (3)
- May 2018 (2)
- April 2018 (2)
- March 2018 (1)
- February 2018 (2)
- January 2018 (3)
- December 2017 (2)
- November 2017 (3)
- October 2017 (4)
- September 2017 (2)
- August 2017 (1)
- July 2017 (2)
- June 2017 (4)
- May 2017 (1)
- April 2017 (3)
- March 2017 (5)
- February 2017 (2)
- January 2017 (2)
- December 2016 (3)
- November 2016 (2)
- October 2016 (3)
- August 2016 (1)
- June 2016 (1)
- May 2016 (3)
- April 2016 (1)
- March 2016 (4)
- October 2015 (1)
- September 2015 (1)
- August 2015 (1)
- July 2015 (1)
- June 2015 (3)
- May 2015 (3)
- April 2015 (2)
- March 2015 (3)
- February 2015 (1)
- January 2015 (5)
- December 2014 (2)
- November 2014 (2)
- October 2014 (2)
- September 2014 (6)
- August 2014 (7)
- July 2014 (5)
- June 2014 (3)
- May 2014 (5)
- April 2014 (3)
- March 2014 (3)
- February 2014 (2)
- January 2014 (2)
- December 2013 (1)
- November 2013 (2)
- October 2013 (5)
- September 2013 (3)
- August 2013 (2)
- July 2013 (3)
- June 2013 (7)
- May 2013 (9)
- April 2013 (5)
- March 2013 (3)
- February 2013 (2)
- January 2013 (6)
- December 2012 (6)
- November 2012 (4)
- October 2012 (11)
Meta
Category Archives: Mathematics
Abelian Varieties
Jerry Wang gave a nice talk this week on his generalization of Manjul’s work on pointless hyperelliptic curves to hyperelliptic curves with no points over any field of odd degree (equivalently, \(\mathrm{Pic}^1\) is pointless). This work (link here) is joint … Continue reading
Posted in Mathematics
Tagged Abelian Varieties, Beauville, Bhargavaology, Dick Gross, Jerry Wang, Manjul Bhargava
Leave a comment
Who is D.H.J. Polymath?
D.H.J. Polymath is the assumed collective pseudonym for the authors of a number of papers which have arisen as a result of the polymath project initated by Gowers. Presumably, since it is a matter of open record, one can go … Continue reading
Why is my paper taking so long to review?
The question in the title does not refer to any of my own papers; rather, I want to *answer* the question from the perspective of an editor. Here, roughly, is how the sausage is made (this is a medium case … Continue reading
Posted in Mathematics, Politics
Leave a comment
Virtual Congruence Betti Numbers
Suppose that \(G\) is a real semisimple group and that \(X = \Gamma \backslash G/K\) is a compact arithmetic locally symmetric space. Let us call a cohomology class tautological if it is invariant under the group \(G\). For example, if … Continue reading
Life on the modular curve
Alice and Bob live on the modular curve \(X_0(1) = \mathbf{H}/\mathrm{PSL}_2(\mathbb{Z})\). What does the world look like to them, assuming that they view the world in hyperbolic perspective? To those who are not used to hyperbolic geometry, there may be … Continue reading
Posted in Mathematics
Tagged 80s, Computer Games, Hyperbolic Space, Jasmine Powell, Justin Ahn, Modular Curve, Wonky
Leave a comment
En Passant III
Question: When you are sick in bed, can you do any mathematics? I just spent the past few weeks with a sinus infection and was completely unable to do anything productive, that is, apart from writing an NSF grant (which … Continue reading
Posted in Mathematics, Waffle
Tagged Akshay Venkatesh, Bilu, Bringmann, Dave Roberts, Harald Helfgott, Parent, Puzzle, QI, Rebolledo, Samir Siksek, Sickness, Zagier
Leave a comment
The Fundamental Curve of p-adic Hodge Theory, Part II
This is a second post from JW, following on from Part I. The Galois group of \(\mathbb{Q}_p\) as a geometric fundamental group. In this follow-up post, I’d like to relay something Peter Scholze told me last fall. It concerns the … Continue reading
Posted in Mathematics, Uncategorized
Tagged Jared Weinstein, Perfectoid Spaces, Peter Scholze, Tilting
Leave a comment
The Fundamental Curve of p-adic Hodge Theory, or How to Un-tilt a Tilted Field
As Quomodocumque once said concerning the most recent set of courses at Arizona Winter School, “Jared Weinstein [gives] a great lecture.” On that note, I am delighted to welcome our first guest post, by the man himself. Note that it … Continue reading
Posted in Mathematics
Tagged Fargues, Fontaine, Fundamental Curve, Guest Post, Perfectoid Space, Tilting
12 Comments
Effective Motives
This is a brief follow up concerning a question asked by Felipe. Suppose we assume the standard conjectures. Let \(M\) be a pure motive, and consider the following problems: Problem A: (“effectivity”) Suppose that \(M\) has non-negative Hodge-Tate weights. Then … Continue reading
Posted in Mathematics
Tagged Deligne, Farbster, Grothendieck, Motives, Standard Conjectures
Leave a comment
Scholze on Torsion, Part IV
This is a continuation of Part I, Part II, and Part III. I was planning to start talking about Chapter IV, instead, this will be a very soft introduction to a few lines on page 72. At this point, we … Continue reading